Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Brief Bioinform ; 22(2): 1291-1296, 2021 03 22.
Article in English | MEDLINE | ID: covidwho-1343632

ABSTRACT

Patients with spinal muscular atrophy (SMA) are susceptible to the respiratory infections and might be at a heightened risk of poor clinical outcomes upon contracting coronavirus disease 2019 (COVID-19). In the face of the COVID-19 pandemic, the potential associations of SMA with the susceptibility to and prognostication of COVID-19 need to be clarified. We documented an SMA case who contracted COVID-19 but only developed mild-to-moderate clinical and radiological manifestations of pneumonia, which were relieved by a combined antiviral and supportive treatment. We then reviewed a cohort of patients with SMA who had been living in the Hubei province since November 2019, among which the only 1 out of 56 was diagnosed with COVID-19 (1.79%, 1/56). Bioinformatic analysis was carried out to delineate the potential genetic crosstalk between SMN1 (mutation of which leads to SMA) and COVID-19/lung injury-associated pathways. Protein-protein interaction analysis by STRING suggested that loss-of-function of SMN1 might modulate COVID-19 pathogenesis through CFTR, CXCL8, TNF and ACE. Expression quantitative trait loci analysis also revealed a link between SMN1 and ACE2, despite low-confidence protein-protein interactions as suggested by STRING. This bioinformatic analysis could give hint on why SMA might not necessarily lead to poor outcomes in patients with COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Muscular Atrophy, Spinal/complications , Survival of Motor Neuron 1 Protein/metabolism , COVID-19/virology , Disease Susceptibility , Humans , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/prevention & control , Protein Binding , Protein Interaction Maps , Renin-Angiotensin System , SARS-CoV-2/isolation & purification , Signal Transduction , Survival of Motor Neuron 1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL